

Fluidit Ltd
Mannilantie 44 A
04400 Järvenpää, Finland
+358 10 526 9780

www.fluidit.com

User Manual
Modelling HSY Combined Sewer
Real-Time Simulations
ÖVERI Setti

CONTENTS

1 INTRODUCTION .. 1

2 OVERVIEW OF REAL-TIME SYTEMS ... 1

3 PILOT STAGE SET UP .. 4

3.1 General .. 4

3.2 Test environment .. 5

3.3 Overview of the simulation process .. 6

3.4 Set up and tasks division .. 6

3.4.1 HSY tasks .. 6

3.4.2 Neuroflux tasks .. 6

3.4.3 Fluidit tasks .. 7

3.5 Data sources .. 9

3.6 Data source tags ... 9

3.7 Data pre- and post-processing .. 11

3.8 Detailed description of the post-processing expressions used .. 12

4 TESTS AND RESULTS ... 14

4.1 Real-time vs manually generated results ... 14

4.2 Simulation parameters vs accuracy ... 15

4.3 Run times .. 17

5 CHALLENGES AND PROPOSED TIMELINE ... 18

5.1 Other challenges and enhancements... 18

5.2 Suggested version control framework ... 19

5.3 Proposed timeline to achieve early-warning system .. 21

6 CONCLUSIONS AND LIST OF TASKS... 22

6.1 Tasks to achieve production environment ... 22

6.1.1 Reducing the manual work for Q3 simulations and report ... 22

6.1.2 Updating strategies to produce automated reports ... 22

6.1.3 Creating data tags for measurement data ... 22

6.1.4 Implement a version control strategy ... 22

6.1.5 Metadata for simulation results ... 22

6.1.6 Updating the model version used in the real-time system .. 23

6.1.7 Cleaning up the files ... 23

6.1.8 Server’s technical specifications for production environment 23

6.1.9 Server resilience and cyber security .. 24

6.1.10 New simulation’s frequency for the production environment 25

6.1.11 More input data processing ... 26

6.1.12 Continuous automated checks and status report .. 26

6.2 Discussions for the future of the system .. 26

6.2.1 Forecast input data... 26

6.2.2 Test how 2D simulations can be applied to the real-time system 27

6.2.3 Continuous and automated performance evaluation ... 27

6.2.4 Including probabilities to the results .. 27

Version Date Author Verification Project Coordinator

2 3.2.2023 Pedro Almeida Hannes Björninen Doris Kalve, HSY

1 19.12.2022 Pedro Almeida,
Hydroinformatics
Engineer,
Fluidit Ltd

Hannes Björninen
Lead Engineer
Fluidit Ltd

Markus Sunela
CTO
Fluidit Ltd

Leena Sänkiaho,
Development Engineer,
HSY

APPENDICES

APPENDIX A - Comparing model properties
APPENDIX B - Differences in precipitation data (discussions)
APPENDIX C - Oscillations for long-term simulation (Q3-22)

TABLES

Table 1. Run times with different settings ... 18
Table 2. Server’s technical specifications for production environment .. 23

FIGURES

Figure 1. Simplified time frame scheme of a real-time system ... 2
Figure 2. Diagram of a hindcast system. Results' delays from an operator's perspective. 4
Figure 3. Process to run 1 simulation ... 8
Figure 4. Example of data source tag ... 10

Figure 5. Results reported for each location ... 10
Figure 6. Data source tags with unit conversion ... 11
Figure 7. Time series with data source and post processing expression 12
Figure 8. Visual representation of a post processing expression .. 13
Figure 9. Manual vs Real-time: differences in precipitation input data ... 15
Figure 10. Depth measurements available within the model's domain .. 16
Figure 11. Previous optimized model's properties. Also used during most of the pilot phase. New
settings (accurate and extra) used to evaluate model’s performance. ... 16
Figure 12. Model results for YVK008 with different model settings: Optimized, Accurate, and
Extra .. 17
Figure 13. Version control framework ... 19
Figure 14. Git history tool in Fluidit .. 20
Figure 15. Suggested timeline to achieve an early-warning system ... 21
Figure 16. Operator’s perspective when visualizing results from the model once the forecast is
introduced. The scenario assumes simulations every 10min with 2h forecasted values. 25

1

1 INTRODUCTION
This report documents the technical aspects of HSY’s ÖVERI “Setti” sub-project. The goal was
to develop and pilot an online model that performs near real-time simulations of the HSY
combined sewer system (also referred as HSY-CS-model/HSY-SKV-Malli) to report combined
sewer overflows (CSO).

This document summarizes the technical aspects of the pilot stage, and presents suggestions
for the next project phases for operational implementation and further development. The
project was partially funded by the Ministry of the Environment’s Water Protection Programme1.
The work was undertaken in close collaboration between the three project team members:

 Helsinki Region Environmental Services Authority (HSY)
 Envera Oy (also referred as Neuroflux/Smartvatten in this report)
 Fluidit Oy

During the pilot phase the real-time simulation system was deployed to a test environment
which was created in a server managed by HSY with VPN and remote desktop access provided
to Fluidit. In the test environment it was possible to set up the data connections, run the
simulations, review results, and identify the needs for the next phases of the project. The next
phases will aim to address all the needs encountered during the pilot phase and deploy the
real-time simulations to a production environment from where the model’s results can be
effectively considered in HSY’s daily operations.

2 OVERVIEW OF REAL-TIME SYTEMS
A hydraulic model, such as the HSY-CS-Model, can be used for several tasks, such as:

 Plan new developments / design work
 Prepare operations by exploring different scenarios
 Investigate current issues in the network
 Estimate pollutant’s discharge
 Identify critical locations

Since the model is a digital representation of the network, it can also be used to assist
operational tasks when embedded in a real-time system. This application can also be referred
as online model, early warning system, forecasting system, digital twin, decision support system,
and more. The basic idea is that input data acquired in near real-time, such as precipitation,
feeds the model, which runs simulations with a pre-defined frequency producing results (e.g.
every 1h). All the process within the real-time system runs automatically instead of manually.
Results can be generated for the past, using historical observational data, and for the future,
using forecasted data. See Figure 1 for a visual interpretation of the time frame.

1 Ministry of the Environment, Water Protection Programme, https://ym.fi/vedenvuoro

2

Figure 1. Simplified time frame scheme of a real-time system

The main differences between the hindcast and forecast models are outlined below:

Hindcast:

 The model is fed with historical observational data
For instance, precipitation, temperature, and external inflows. External inflows refer to
measured or estimated flow time series used to represent areas not included in the
model. These areas are usually located at the borders of the network model, but the
incoming flows are still relevant for the simulations. For example, the flows discharged
from Suomenlinna island.

 Model’s results can be compared with measured data
For instance, flow or level measurements placed at the network in different locations.
Measurements are the closest “estimation” of what truly happened. At these locations,
results from the model can be compared with measurements to indicate, how well the
model is reproducing measured values and how well the measurements are working.

 Estimation of the past state in the entire network
Since measurements are available only at few locations, the model, when calibrated,
gives the best estimation of what is happening in the entire network and where the
measurements are not available or cannot be trusted.

3

Forecast:

 The model is fed with forecasted data
For instance, forecasted weather data, such as precipitation and temperature, but also
forecasted dry-weather inflows and direct inflows from the bordering areas.

 More uncertain results
The model’s results are directly impacted by the input data and its quality (e.g.
precipitation). When the input data itself is a forecast (i.e. estimated values) the results
of the model will also be more uncertain. The uncertainty can be also estimated in forms
of probabilities. These probabilities can be distributed together with model’s results
similarly as it is used in weather forecasts (e.g. 80% chance of overflow in certain
location).

 Estimation of the future state in the entire network
The model uses the latest results, such as water depths, quality parameters, amount of
snow and moisture in the soil, obtained from the hindcast as the initial condition. From
there, the future state of hydraulic and hydrological variables is estimated for the entire
model’s area. 2

There are several benefits of embedding the model into a real-time system, such as:

 Quickly visualize the current state of the network at any location
 Reduced or no manual work needed to generate results
 Measurements and model’s results combined
 Effectively use all data produced in favour of the operations
 Results can be accessed easily by many different stakeholders
 Real-time system can form basis for an early-warning system able to produce alerts,

such as overflow/flooding
 Improve communication with authorities in case of extreme events
 Enables other real-time projects, such as dynamic control of the network. For instance,

aiming to improve energy efficiency as explored in Tampere or using real-time-control
(RTC) systems to reduce overflows.

A real-time system, as described here, provides the ability to understand what happened in
the near past and what is likely to happen in the near future. This information is especially
critical for understanding the impacts of an extreme event a few hours in advance (forecast),
but also quickly identify what were the problems that occurred during the event (hindcast).
Adopting a real-time system to utility operations is an important step towards a more resilient
infrastructure.

Only hindcast simulations were included and tested in the pilot phase of the real-time system.
Forecasting capabilities are discussed in sections 5 and 6.

2 Markus Sunela. Real-Time Control Optimization of Water Distribution System with Storage. 2017.
ISBN 9789949831654. doi: 10.3917/lett.051.0109.

4

3 PILOT STAGE SET UP

3.1 General

It was decided to implement the real-time system step-by-step, starting with the nowcasting
(also referred as hindcast model in this report). Nowcasting was the easiest milestone to
achieve for this specific project since historical observational data was already familiar to HSY’s
workflows. Another reason to start with the hindcast is that the HSY-CS-model has been
partially calibrated with historical observational data. Hindcasts, however, have their own
challenges. For instance, the frequency of simulations is limited by the frequency of which
input data is acquired.

Figure 2 contains a diagram of the hindcast from the perspective of an operator to whom the
information would be relevant. During the pilot phase, the process to run a simulation
happened every 1h beginning at exact clock hours, for instance, 09:00, 10:00, and 11:00 as
depicted in the diagram. The first steps of the process involve fetching input data, setting up
and running the simulation. In the diagram, the time delay represents the time it takes from
the beginning of the process until the results are generated . Deeper discussion about the
time delay during the pilot phase is available in section 14.

As the process is repeated every 1h, and there is a delay until the results are available, the
latest results are always delayed in relation to the clock time. Figure 2 also contains examples
of delays that would be experienced by the operator when checking the results in different
instants . For instance, a 65min delay in the model’s results would be observed when checking
the results at 09:05 since the process to generate new results would be still running until ~
09:10.

Figure 2. Diagram of a hindcast system. Results' delays from an operator's perspective.

5

More on result’s delay from operator’s perspective:

 Td = time to obtain input data + simulation’s run time + time to transfer results
 Minimum possible result’s delay = Td (~ 10min in Figure 2)
 Maximum possible result’s delay = process frequency + Td (~ 70min in Figure 2)

Figure 16 illustrates how the delays from the operator’s perspective could change once the
process frequency is updated and forecasts are included.

3.2 Test environment

A server has been provisioned/ordered by HSY’s IT department to this pilot project. The
environment’s requirements are driven by Fluidit Storm software, the HSY-CS-Model, and the
nature of real-time continuous simulations.

 Basic requirements for Fluidit Storm Online
o 64-bit operating system: Windows 10 or 11, Mac OS X 10.10 (or newer), Linux (e.g.

Ubuntu 20.04, CentOS 9)
o Min 2 cores (e.g., Intel i5 or AMD A10)
o Min 4 GB RAM
o Min 5 GB hard disk space, but in practice much more, depending on for how long

period the historical simulation results are to be saved
o Java 11 runtime, 64-bit, support for version 11–17 (64-bit). For Windows, Fluidit

exe-installers include the latest Java 17 release from OpenJDK.
o License and product key.
o Refer to the software’s installation guide or support@fluidit.com for more details.

 Basic requirements for real-time continuous simulations
o Access to the input data (if the necessary data is not stored on the server)
o On for 24/7
o Software or framework to drive unattended processed with specified frequency

(e.g. task scheduler in Windows or cron in Unix)
 Basic details of the test environment in this project

o On for 24/7
o Windows Server 2019 Standard
o Processor: Intel® Xeon® Gold 6226 CPU @ 2.70GHz
o Installed Memory: 16 GB
o System type: 64-bit Operating system
o Domain: hsy.local
o Amazon Corretto 17 Java release installed
o Internet access
o Remote desktop access for Fluidit users in order to set up the software. Accessed

via VPN.
o Managed by HSY’s IT department

6

3.3 Overview of the simulation process

There are three main operations for a real-time simulation. The operations are executed with
a pre-defined frequency (1h for the pilot phase). The three main operations are:

1. Obtain input data
2. Simulate
3. Transfer results

The three main operations are repeated with certain frequency (e.g. every 1h). From the model’s
perspective, however, the simulations are continuous. Therefore, when a simulation ends the
model’s state is saved at the last time step to a SWMM’s hot start file. When the next
simulation starts, the hot start file is loaded, and the model continues from where the last
simulation ended.

To summarize, there are two important elements that drive the process of the real-time
system. Brief descriptions of them provided below and a the diagram of the process in Figure
3:

1. Fluidit Storm+ software
The platform where the HSY-CS-model is managed. The Fluidit platform also has all
infrastructure related to handling the model, setting up data connections (Dataport),
data pre- and post-processing and reporting results. Hence, the model and the Fluidit
platform are the central piece of the system. Fluidit Storm+ software was installed by
Fluidit in the test environment.

2. Neuroflux and Finnish Meteorological Institute (FMI) API
The simulation process requests input data from these application programming
interfaces (APIs). In case of Neuroflux’s API, it is also used for storing the simulation
results at the end of a simulation. All the connection settings are stored in the model
and can be modified using Fluidit Storm’s user interface. More details on data
connections are described in section 3.5.

From Figure 3, only FMI and Neuroflux API are not installed in the test environment (Windows
Server). However, the settings of the connection between Fluidit Storm and the APIs are stored
in the model.

3.4 Set up and tasks division

3.4.1 HSY tasks
 Manage the project
 Create the test environment
 Manage accesses to the test environment
 Review results
 Decision about next phases

3.4.2 Neuroflux tasks
 Make sure the API is working

7

 Manage the access to the API together with HSY ICT
 Inform Fluidit about the available data tags, their units etc.
 Receive simulation results
 Display simulation results as time series during the pilot phase.

3.4.3 Fluidit tasks
 Install the software in the test environment
 Create and manage license and software users
 Update the model for real-time requirements during the pilot phase
 Create online modelling solution
 Review results

It is important to remember that model used by the system (HSY-CS-model) is not static.
Instead, the model is updated from time to time to reflect the current state of the network.
To obtain the most realistic results, the real-time process should always use the latest stable
version of the model. For that, the model itself could be managed in a more structured manner
discussed in section 5.2.

8

Figure 3. Process to run 1 simulation

9

3.5 Data sources

Data connections are set up using Fluidit’s data source component. A data source component
is created in Fluidit Storm for each source. During the pilot project a data source component
was created for both the Finnish Meteorological Institute (FMI) API and for Neuroflux’s API. It
is possible to fetch data from the sources, but also send data to the sources. For instance,
precipitation and measured flows are fetched from Neuroflux’s API and used as input data for
a simulation. Once the simulation is over, model’s results are sent back to Neuroflux’s API
(more details of the process in 3.3). To access the data sources, open Fluidit software, then
go to [Model] > [Data sources].

FMI data source

FMI is a weather data source. In Fluidit Storm, by the time of this project, two weather
providers are included by default: FMI (coverage for Finland) and NOAA (global coverage).
Creating such data source is simple. Go to [Model] > [Data sources] > New > Weather Data
Source > select the provider (FMI in this case).

Neuroflux data source

Neuroflux data source can be accessed in the model in the same path as other sources. To
gain access to this source the user must obtain the URL, key certificate, and private key from
the data provider (Neuroflux).

Data sources inform to the model the location where it will fetch data. This is however not
enough to specify what data will be fetched from the source. For that, data source tags
components are created.

3.6 Data source tags

A data source tag is used to map data from the source to a variable that can be used in Fluidit
software (e.g. as input to the model). For instance, the HSY-CS-Model uses sea level data as
input (boundary conditions). During the pilot phase, the sea level data was fetched from FMI’s
data source. Since FMI provides data on several different weather parameters, there is the
need to inform which “tag” refers to the sea level data. A data source tag component can be
added/visualized in the software’s UI via [Model] > [Data source tags]. Check Figure 4 for an
example of the data source tag created for the sea level data. The main parameters are:

Source name / source name override:
This indicates the name of the parameter within the source. In other words, how Fluidit
locates the given variables from the FMI’s database. This code can be usually found from the
data provider’s documentations. In Fluidit Data Source component, right-click can also query
the tags/codes that are available for the given source.

Time Offset, expression, and post-processing expression:
These are parameters that are used to process the data coming from the source. In the case
of the sea level data, the value is divided by 1000 to convert the units from millimetres (unit
provided by the source) to meters (unit needed by the model).

10

Figure 4. Example of data source tag

General tag statistics:

 692 tags total
o Of which 264 are for rain gages – Neuroflux
o 27 for external inflows - Neuroflux
o 2 from FMI sources – sea level and temperature
o 399 tags for simulated CSO load results (description below)

During the pilot phase the model reported results for 57 locations. There were 7 different
results for each location. Hence, 7 tags were created for each one of the 57 locations (57 x 7
= 399 tags). Only 3 of the 57 locations were from pumping stations (JVP1014, JVP1052, and
JVP1053) and the remaining for CSO locations (YVK). An example of the seven results reported
for a location is depicted in Figure 5. These results are sent to Neuroflux as indicated in the
process diagram (Figure 3).

Figure 5. Results reported for each location

11

Note that the number of results reported (399) are solely determined by the needs of HSY.
After a model’s simulation is over, hundreds of results available for every location modelled.
Thus, the number of results reported can be increased/decreased as per need.

Some of the data fetched from the sources need to be treated before being used as an input
to the model. The data processing can range from a simple unit conversion to more complex
treatments.

3.7 Data pre- and post-processing

All external inflows, which usually come from Pumping station data, have their unit converted
from m³/h to l/s as indicated in Figure 6.

Figure 6. Data source tags with unit conversion

Finally, the data source tags are assigned to time series components, which can then be used
by components in the model such as inflows or rain gages. However, before being used as an
input to the model, some data are post-processed as an attempt to avoid issues caused by
the faulty data. Time series post processing is done using expressions that are written to the
series’ property Data Post Processing as shown in Figure 7. To access the properties of a given
time series through Fluidit’s software UI, go to Model > Time Series > select a time series.

12

Figure 7. Time series with data source and post processing expression

3.8 Detailed description of the post-processing expressions used

Post-processing used for precipitation data

Precipitation data received a post processing expression to ensure that all steps have data. If
the following step has missing data, it repeats the last available value. In case the next data-
pairs are also missing, then the values are assumed as zero. See below a detailed description
of each function used and a visual representation in Figure 8.

capMin(lag(zeroNaN(nanAfter(series, 10 / 60),), 5 / 60), 0)

series
Refers to the original raw time series being processed by the expression

nanAfter() nanAfter(timeseries, 12fterhours)
Keeps returning NaN for the series, as long as the gap between entries is larger than
afterhours. In our case this function simply “adds” a NaN (not a number) when there is a gap
in the source time series larger than 10min (i.e. sixth of an hour -> 10/60 as this function
uses hours as time units). The 10min was chosen because the precipitation data had a 5min
step. Hence this assures that there will be a value (NaN) for at least every 10min.

zeroNaN() zeroNaN(timeseries)
Replaces all NaN values from the series with zero. In here, this simply replaces all the NaN
values that were existing in the source data or generated by the nanAfter() function to zero.

lag() lag(timeseries)
Returns lagged values from the raw time series. This function guarantees there will be a data
entry every 5min. Also, it copies (lags) the last existing value for the next missing step.

capMin() capMin(timeseries, min)
Limits the value to min. In this case, it sets the minimum value possible for the precipitation
data to be zero so that negative values (if any) coming from the data source are replaced by
zero.

13

Figure 8. Visual representation of a post processing expression

14

Post-processing for pumping station data

Pumping station data also received a post processing expression. In this case, it guarantees
there will be data after a 1h gap and the value will be the average between the 1h step. As it
uses almost the same functions as the expression used for precipitation data, refer to its
documentation above for more details.

avg(zeroNaN(nanAfter(series, 1)), 1)

There are several possibilities of data processing available in Fluidit software. The examples
above were utilized during the pilot phase. More processing can be done in future stages of
the project per need. Contact support@fluidit.com for more details.

4 TESTS AND RESULTS
This section describes tests carried out during the pilot phase.

4.1 Real-time vs manually generated results

The goal of this test was to assess whether the results generated by the real-time process
(every 1h) are similar to results obtained when running the simulation manually. Larger
discrepancies here could indicate issues in the data or data transfer. Smaller discrepancies
can occur since both methods are not identical as, for instance, pumps’ statuses are not
retained in the hot start file. However, even smaller discrepancies can be further investigated
in this test.

The initial tests showed large discrepancies in overflow quantities with the real-time
application overestimating by about 4 times the amount reported by simulations manually
generated. After investigations it was observed that the precipitation data of the two methods
was the main cause of discrepancies. The two main differences noted were:

1. No-data values: precipitation data input to the real-time model (from Neuroflux) had
much larger overall volume as no-data values of 2.55 were kept in the data. This was
corrected during the pilot stage. The new results after correction showed a much
better agreement in overflow volumes reported when comparing the two methods.

2. Differences observed: there were still differences observed when checking the
precipitation data on the rain gage’s level. Even when the overall volume of
precipitation falling on the entire model’s domain is similar, the local variations
observed still yield different overflow results since catchments upstream the
overflow points will receive slightly different precipitation data. See an example for
rain gage 254954036675064 in Figure 9. Investigations regarding the differences are
still ongoing with the latest hypothesis being related to how precipitation data is
treated by the two distinct processes (Manual vs Neuroflux). Details of the
discussions can be found in the Appendix B.

15

Figure 9. Manual vs Real-time: differences in precipitation input data

4.2 Simulation parameters vs accuracy

The period between 14.7.2022 and 17.7.2022 was chosen for the evaluation as three events
occurred within this period. The events are classified here as A, B and C. Four measurements
were available (Figure 10), but only YVK008 was evaluated for simplicity.

Overflows during the two first events (A and B) were likely to have occurred as the measured
depth at the manhole/tank was above the overflow threshold (see Figure 12). No overflow was
observed from the measurements in the third event (C).

Three sets of simulation parameters were used for the comparison. The initial set of
parameters are referred as Optimized since they represent the set which focus on run time
speeds rather than accuracy. The other two sets: Accurate and Extra used refined parameters
to increase the model’s results’ accuracy. The set of parameters are depicted in Figure 11.

The results of each set are depicted in Figure 12. The Accurate set did not present any relevant
improvement in relation to the previous set (Optimized). The Extra set simulated the initial
peak of event A with more agreement with the measurements and presented a better match
for event B. All sets overestimated the measurements for event C. All simulations seem to
overestimate the volume in the system at this location during the three events.

16

Figure 10. Depth measurements available within the model's domain

Figure 11. Previous optimized model's properties. Also used during most of the pilot phase. New settings
(accurate and extra) used to evaluate model’s performance.

17

Figure 12. Model results for YVK008 with different model settings: Optimized, Accurate, and Extra

4.3 Run times

Goal of this test was to measure the time it takes for the model to run using the different
simulation settings as described in the previous section and document the time delays to
acquire input data for a simulation.

HSY-CS-model has been used to simulate 3-month long simulations among other applications.
Hence, the simulation’s settings were optimized to ensure reasonable run times considering
the size of the model and long period of simulations required. However, for the real-time
framework, the settings could be adjusted to focus on accuracy, provided that the run times
will not increase over the limit required for the application. After testing it was observed that
the total run time (acquire the data + simulate) with more accurate settings (Extra) is about
3min for 1h long simulation period. Hence, the most accurate setting tested can be used for
the application with the current model’s version. Run times for other periods are available in
Table 1. smaller simulation periods would also be possible (30min, 10min, and 5min) with the
current version of the model.

18

Table 1. Run times with different settings

Period’s
length

Delay to fetch and load
input data (Neuroflux)

Model’s run time
optimized settings

Model’s run time with
extra accurate settings

5min 00:00:47 00:00:05 00:00:14
10min 00:00:47 00:00:08 00:00:21
30min 00:00:47 00:00:14 00:00:52
1h 00:00:48 00:00:23 00:02:00
3h 00:00:50 00:01:23 00:06:00 *
24h 00:00:54 00:07:06 00:48:00 *
7d 00:01:40 01:10:30 05:36:00 *
31 days (1m) 00:04:21 04:45:12 * 24:48:00 *
92 days (3m) 00:10:05 13:24:12 73:36:00 *

* Estimated based on 1h simulation period of the same settings
Notes:

- tests were carried operating the model via Fluidit’s software user interface. When the software runs via command line
the processes are faster since no UI processing is required (the case for the real-time application). Hence, the times
above can be considered conservative.

- Tests were carried in the test environment. Specification of the test environment can be found in section 3.2.
- Simulations had initial conditions set by a hotstart file.

- Extra accurate settings are defined Figure 11.
- The model version used had only 1D components. No 2D flood simulations were evaluated.

5 CHALLENGES AND PROPOSED TIMELINE

5.1 Other challenges and enhancements

Challenges and enhancements during the pilot stage are listed here:

 Flow oscillations in long-term simulations. Details in appendix C
 Fluidit’s SWMM improved how pollutants are calculated at links after discrepancies

pointed out by Leena Sänkiaho (HSY).
 Fluidit implemented hotstart files to better account for initial conditions.
 Fluidit implemented Neuroflux data source drive. Described in section 3.5.
 Input data required some processing, which is done directly in Fluidit software. Details

already described in section 3.7. Further processing is suggested in 6.
 Neuroflux/HSY also has depth data available for various locations within the model’s

domain which could be used as initial condition (overriding, for these locations, values
obtained from the hotstart file). However, these can cause instabilities as the values
may not agree with initial conditions of the neighbouring elements in the network. Thus,
no initial level/data was used during the pilot state to override those coming from the
hotstart file. If necessary, this can be implemented/reassessed during the next stages
of the project.

 Flow oscillations in long-term simulations: details in appendix C
 Different versions of the model. This is discussed in the following section.

19

5.2 Suggested version control framework

It is essential to store the model more consistently to avoid having multiple versions of the
model stored separately with little metadata and to make it possible to apply updates to the
model. This section proposes a framework for storing the model leveraging Fluidit’s version
control capabilities (a built-in GIT implementation). The framework is illustrated in Figure 13.
The need for such framework was observed also during this project.

Figure 13. Version control framework

Model master version
Main version of the model. This version should be a working stable version of the model that
all the users can rely on. In other words, it is the version of the model containing the most
updated or reliable information of the real network/system. To leverage the existing feature of
working collaboratively in Fluidit Storm, the model should be stored on a GIT server. The server
can be a local server of the utility (i.e. not in the cloud) and can be managed fully by the
utility’s IT department in order to apply all the security protocols desired, such as management
of access. Since GIT version-control system is widely used, it is likely that utilities (or their IT
departments) are already familiar with it and even have already their own GIT server(s). If more
assistance is required, please contact support@fluidit.com.

1st level access
These are the users/applications with access to the model master version. By default in Fluidit
Storm’s user interface, the latest version of the master model is downloaded to the user’s
computer whenever the model is opened, if the user provides his/her credentials for the server.
Once permanent updates are done in the model by the user (e.g. deleting a pipe that has been
discontinued) and the model is saved, these updates are sent to the master version of the
model which will be available for other users with 1st level access - including the real-time

20

application discussed in this report. Examples of tasks that would be carried by a user with 1st
level access are:

 Updating a pipe in the model
 Adding network of new neighbourhood
 Updating the inflows (e.g. adding new wastewater consumers)
 Updating parameters of a catchment
 Updating settings of pumping station to better match measurements
 Creating new visualizations that can be reused by other users or recurrent processes

(drawing states)
 Creating new reports that can be reused by other users or recurrent processes

(schematics)
 Calibrating groundwater infiltration with new available measurement data

Every time a user updates the model, the user may write a brief description (commit)
describing the alterations. The user’s credentials, date and time of the updates, and model
version is stored. These versions can be viewed and managed through Storm’s user interface
(Figure 14). It’s possible also to visually inspect previous versions (check out) and, if necessary,
revert to a previous version. Reverting, for instance, could happen when the user realizes the
latest updates (commits) contain errors and a previous version should be the latest (head).

Figure 14. Git history tool in Fluidit

2nd level access
Users with 2nd level access receive the model only from users that have 1st level access. Thus,
there is no direct connection between a user with second level access and the master
version of the model. Users with 1st level access can share a snapshot version of the model
to users with 2nd level access in case they have to perform some tasks using the model. The
model can be shared via a simple file. External consultants are an example of users that
could have 2nd level access. Examples of tasks that would be carried by a user with 2nd level
access are:

 Temporary analysis using a snapshot version of the model
 New modellers or trainees getting familiar with the model
 Running simulations for a specific report that do not require any update to the model

21

For more on Fluidit’s version-control, check our support page:
https://support.fluidit.com/projects/simulators/wiki/Saving_and_opening_the_model

5.3 Proposed timeline to achieve early-warning system

The hindcast/nowcast in real-time and the infrastructure created to support such system
allows for a wide range of applications. Many of these applications could greatly benefit the
utility’s operation and the society. Figure 15 below shows a suggestion for a timeline to achieve
an early-warning system. It is important to highlight that the next steps can be achieved with
less effort since they leverage the same/similar infrastructure created and tested during this
pilot stage.

Figure 15. Suggested timeline to achieve an early-warning system

22

6 CONCLUSIONS AND LIST OF TASKS

This section lists the tasks suggested for the next stages of the real-time application. The list
is sorted by the suggested sequence the tasks should be carried when moving forward in the
timeline proposed in Figure 15 above. It is recommended that the 12 topics discussed in section
6.1 are implemented already while setting up the production environment.

6.1 Tasks to achieve production environment

6.1.1 Reducing the manual work for Q3 simulations and report

Once the differences in precipitation are sorted out (described in Section 5.1) the
accumulated 3 months long results can be compared between the previous manual method
and Neuroflux’s accumulated results. After this check, the amount of manual work to
prepare the model for a Q3 simulations can be immediately reduced since all input data
can be fetched with a few clicks [Tools] > [Update Time Series Data from Source].

6.1.2 Updating strategies to produce automated reports

The reports that are obtained from the manual method (via the Python code
generateReport.py which is included in the model) and the reports shown in Neuroflux are
likely different in content and layout. HSY and the other parties should decide if the reports
will be still generated by the Python plugin available in the model or if the reports will be
compiled by Neuroflux. Once this decision about the reports is made, the manual work can
be almost completely deprecated as all the process can be automated leveraging the real-
time system. Additionally, the amount/location of model’s results transmitted to Neuroflux
(section 3.6) can be easily increased/decreased if necessary. The model produces several
results for every location of the modelled network.

6.1.3 Creating data tags for measurement data

HSY has measurement data collected in different parts of the network. A quick access to
this data would likely benefit all users of the model in all its applications since data would
be easily fetched directly from Fluidit Storm’s user interface with few clicks. It also
supports further calibration or performance evaluation strategies for the real-time system.

6.1.4 Implement a version control strategy
Implementation of the version control framework is proposed in 5.2.

6.1.5 Metadata for simulation results

It was discussed during this pilot the need to connect the model’s version to the results
generated by the simulation. This information informs the users which results were
generated by which version of the model to assist in future reviews should any error be
encountered in the model. It was suggested during this project that the simulations will
never be rerun to avoid confusion (e.g. old reports lose their value as the past results would

23

be modified). If an update is required in the model to ensure more realistic results, the
update is carried and the next results from that moment will be generated with the correct
version of the model. The version control framework proposed in 5.2 precedes this
implementation. The metadata indicating the version that generated the results can be
easily stored (and sent) to other systems, for example stored as a result in Neuroflux.

6.1.6 Updating the model version used in the real-time system

The model version used by the real-time system can be updated by users with first level
access and access to the environment. Updates are likely to be done manually (or semi
manually) to ensure that the version chosen is suitable to the purpose of the system. The
utility can decide when updates are necessary based on changes done to the master version
(e.g. when it is known that the version used by the system is outdated).

6.1.7 Cleaning up the files

With the current framework (Figure 3) new model and a hotstart file are created for every
run (two files every 1h) which were about 17 MB together (8MB for results, 8 MB for the
model itself, and 1 MB hotstart file). During the pilot stage these files were kept in order
for quick debugging. However, keeping these files is important as they work as input for the
next simulations and can also be used to investigate recent interesting events without
having to resimulate. It should be decided, during the next stage, how many files can/should
be stored based on the production’s environment storage space limits. For instance, if only
the files generated in the latest week were kept, and the model generates results for
2h10min period (10min hindcast and 2h forecast) with 10min report step and simulation
frequency, each simulation would generate ~ 37 MB. For a week, this would mean ~ 37 GB
worth of files. The old files are currently automatically cleaned up by a separate Python
script run once a day.

6.1.8 Server’s technical specifications for production environment

The main driving factors defining the recommended specifications are the model and its
data, Fluidit Storm and peripheral software, and the desired level of availability for the
server. Cyber security is discussed instead in section 6.1.9 below.

Table 2. Server’s technical specifications for production environment

Operating system Preferably Linux (e.g. Ubuntu 20.04, CentOS 9) or Windows Server 2019 or 2022. 64-bit
operating system is required

Processor Minimum a dual-core CPU (e.g., Intel i5 or AMD A10); at least four cores (eight
recommended) for running Fluidit Viewer server or 2D flood simulations

RAM 8GB RAM; 16 GB or more, if running Fluidit Viewer server or 2D flood simulations

Disk space At least 256 GB

GPU For 2D flood simulations, a powerful OpenCL >=2.0 capable, discrete GPU with at least 4
GB of dedicated memory along with the proper drivers is required. Preferably a Nvidia GPU

24

(e.g. GeForce 16xx or 20xx series). AMD GPU’s from Radeon RX 500 and RX 5000 series
work too.

Outbound
connections

The software can function without Internet connection, but there likely is need for at least
limited connections. Currently the temperature and sea level data are fetched from FMI
servers (https://opendata.fmi.fi/), and HSY measurement data is fetched from and
simulation results are stored in Neuroflux via (https://hsy.nfapp.fi:5000), and if no changes
are to be done, these connections must be enabled. Ideally there would also be possibility
for communicating with the Fluidit license server at (https://license.fluidit.fi).

If Fluidit Viewer server is installed, then Internet connection is also required to any
background map sources, such as https://kartat.kapsi.fi for the Finnish national land
survey maps and OpenStreetMap https://[abc].tile.openstreetmap.org/.

Inbound
connections

If Fluidit Viewer server is installed, then the server machine and related firewalls etc. must
accept HTTP(S)-connections from the HSY intranet (office network).

Software required
on server

Docker (Linux) for running Fluidit Storm Online
Docker (Linux) for running Fluidit Viewer, if enabled

Availability 24/7
The system will be producing data that is likely going to be used in some extent by HSY’s
operational team on daily basis. Some details are also discussed in section 6.1.9.

License The service requires a specific license for Fluidit Storm Online software which will be
granted by Fluidit Ltd. The license file and product key are stored on the server. If Internet
connection won’t be available, a perpetual license tied to the specific machine will be
used. The license will grant right to run the online simulation (and Fluidit Viewer) on the
server.

Permissions to
users outside
HSY’s domain

True remote connection (SSH, RDP) is required to the server. Access to the related
services, such as Neuroflux and Fluidit Viewer, via VPN is required, too. Ideally the Fluidit
support team would have root-level access to the server.

Software
distribution

The real-time simulations require no software on the end user workstations. The results
are accessible via web-browser via Neuroflux and the optional Fluidit Viewer web
interfaces.

Desktop version Fluidit Storm can be installed on interested users’ workstations. On
Windows, the software should be distributed using Endpoint Management (Software
Center), via the installer provided by Fluidit Ltd. The cryptographically signed installer
bundles Java with the software and supports silent installs.

6.1.9 Server resilience and cyber security

As the real-time application progresses and starts to be used by the operational team of
the utility, it is recommended that at least some level of resilience for the production
environment (server) is implemented. The resilience to be discussed may include backup
in case of power outage, alerts of communication failure or speed, security, and other
overall status alerts.

Funding opportunity is available from the Finnish Transport and Communications Agency -
Traficom (Liikenne- ja viestintävirasto). The grant is aimed to support projects that increase
the cyber security of companies critical to society’s functioning. It is very likely that the
cyber security around the model’s data and all its applications are eligible for the grant. A
project to improve the cyber security can run in parallel with other activities/projects done

25

with the model. Fluidit’s IT experts can also work together with HSY’s IT department to
define security specifications for the model’s applications. The application is open since 1st
of December 2022. Traficom will organize a webinars to instruct how to apply for the grant.
First webinar happens on January 11, 2023 from 9 to 11 a.m. More information (in Finnish)
available here:
https://www.traficom.fi/fi/ajankohtaista/tietoturvasetelin-haku-aukeaa-pian-tutustu-tietoturvan-
kehittamisen-tuen-ehtoihin-ja

6.1.10 New simulation’s frequency for the production environment

As discussed in 4.2 and 4.3, the simulations can run more frequently and use more accurate
settings. This can be already implemented when the hindcast goes for the production
environment, but the frequency adopted will also likely continue even for further steps of
the system. For instance, for a 2h10min simulation period (10min hindcast and simulation
frequency + 2h forecasted results) as idealized in Figure 16, the entire process is likely to
take ~ 8min. So, even if longer periods are simulated, a 10min frequency would be possible
or 20min for a more conservative approach. The more accurate properties can be set to
the model using the python script at the beginning of each simulation to ensure that the
master version of the model keeps the more optimized settings.

Figure 16. Operator’s perspective when visualizing results from the model once the forecast is
introduced. The scenario assumes simulations every 10min with 2h forecasted values.

26

6.1.11 More input data processing

Simple data processing was introduced during this project as described in 3.7 and 3.8. More
opportunities for further processing were identified during this project. The processing of
the data used as input for the model can be done in Neuroflux so that the data fetched by
the model will already be processed or done directly in the model via Fluidit Storm’s user
interface as described here in this document. The parties should decide during the next
stages.

 Cap values for all input data to remove extreme/negative values when applied
 Replacement strategy when data is not available for some rain gage or pumping

station external inflows
 Identification and replacement of outliers which indicate erroneous measurement
 Identification of discontinuity in direct inflows that can cause instabilities in the

model and replacement strategy when applicable.
 Logging erroneous data to be reported to the data providers.
 Discuss and identify other data treatment necessary and add to this list.

6.1.12 Continuous automated checks and status report

The checks listed below can be implemented to ensure that the model is simulating
reasonably, and system’s responsible and operational team are alerted when the simulation
results are not in the acceptable range. First it is necessary to decide how alerts/status
reports should be delivered (e.g. by e-mail or logged to a file available for all users).

Proposed alerts include:

 Errors acquiring input data
 Expected time delay to complete a simulation is exceeded
 Issues with the server (HSY’s IT department)

Proposed Information to be logged:

 SWMM’s simulation reports (also related to section 6.1.7)
 List/GIS data for locations with less accurate results (e.g. list of nodes with high

instability index).
 Instabilities in the main model’s results (such as flow oscillations discussed in the

appendix C)
 Unrealistic results, such as overflows during dry periods.
 Recent and past model performance (discussed in more details in section 6.2.3)

6.2 Discussions for the future of the system

6.2.1 Forecast input data

When simulated forecasts are to be implemented, the forecast input data should be
chosen. The most likely provider is the Finnish Meteorological Institute (FMI). All the parties
involved in this project can work together with FMI to decide on the best data available.

27

Since Finland is an EU member country, it is also likely that the forecasts produced by the
ECMWF are available for free (which can likely also be distributed via FMI’s APIs).

6.2.2 Test how 2D simulations can be applied to the real-time system

Flood maps can be generated using Fluidit Storm so that the real-time system would also
be able to provide such maps and other details related to flood risks. For that, it is
necessary to access how the 2D simulations would impact the simulation time and how
the optimum strategy for HSY’s model.

6.2.3 Continuous and automated performance evaluation

Measurement data is compared with simulated results to evaluate the model’s
performance. This task is usually carried out during calibration projects. The real-time
system can be leveraged to reduce the manual work and increase seasonality and
knowledge about shortcomings in the model. This can be achieved via automated
performance evaluation (comparison measured vs. simulated values) with defined
frequency. Such framework allows the location of uncertainties in the model that helps the
operational team to take more informed decisions based on the model’s results. One of the
frameworks of performance evaluation and user-friendly visualization is discussed in this
study:
https://www.researchgate.net/publication/358634722_Using_multi-
event_hydrologic_and_hydraulic_signatures_from_water_level_sensors_to_diagnose_locations_of_uncertai
nty_in_integrated_urban_drainage_models_used_in_living_digital_twins

6.2.4 Including probabilities to the results

Probabilities added to results can lead to much better estimations, especially when setting
up warnings (e.g. overflow alarms). There is an interesting game prepared by research
carried by the University of Newcastle (UK) to illustrate, in very practical way, how
probabilistic results are usually much better than deterministic (current approach in the
real-time process). The game is in a spreadsheet. Both the game and reference can be
found here: https://research.ncl.ac.uk/vcurbanflood/exploreourproject/virtualflood/

